16 research outputs found

    Monitoring the introduction of pneumococcal conjugate vaccines into West Africa: design and implementation of a population-based surveillance system.

    Get PDF
    Routine use of pneumococcal conjugate vaccines (PCVs) in developing countries is expected to lead to a significant reduction in childhood deaths. However, PCVs have been associated with replacement disease with non-vaccine serotypes. We established a population-based surveillance system to document the direct and indirect impact of PCVs on the incidence of invasive pneumococcal disease (IPD) and radiological pneumonia in those aged 2 months and older in The Gambia, and to monitor changes in serotype-specific IPD. Here we describe how this surveillance system was set up and is being operated as a partnership between the Medical Research Council Unit and the Gambian Government. This surveillance system is expected to provide crucial information for immunisation policy and serves as a potential model for those introducing routine PCV vaccination in diverse settings

    Role of Serial Polio Seroprevalence Studies in Guiding Implementation of the Polio Eradication Initiative in Kano, Nigeria: 2011-2014.

    Get PDF
    BACKGROUND: Nigeria was one of 3 polio-endemic countries before it was de-listed in September 2015 by the World Health Organization, following interruption of transmission of the poliovirus. During 2011-2014, Nigeria conducted serial polio seroprevalence surveys (SPS) in Kano Metropolitan Area, comprising 8 local government areas (LGAs) in Kano that is considered very high risk (VHR) for polio, to monitor performance of the polio eradication program and guide the program in the adoption of innovative strategies. METHODS: Study subjects who resided in any of the 8 local government areas of Kano Metropolitan Area and satisfied age criteria were recruited from patients at Murtala Mohammed Specialist Hospital (Kano) for 3 seroprevalence surveys. The same methods were used to conduct each survey. RESULTS: The 2011 study showed seroprevalence values of 81%, 75%, and 73% for poliovirus types 1, 2, and 3, respectively, among infants aged 6-9 months age. Among children aged 36-47 months, seroprevalence values were greater (91%, 87%, and 85% for poliovirus types 1, 2, and 3, respectively).In 2013, the results showed that the seroprevalence was unexpectedly low among infants aged 6-9 months, remained high among children aged 36-47 months, and increased minimally among children aged 5-9 years and those aged 10-14 years. The baseline seroprevalence among infants aged 6-9 months in 2014 was better than that in 2013. CONCLUSIONS: The results from the polio seroprevalence surveys conducted in Kano Metropolitan Area in 2011, 2013, and 2014 served to assess the trends in immunity and program performance, as well as to guide the program, leading to various interventions being implemented with good effect, as evidenced by the reduction of poliovirus circulation in Kano

    Real-time prediction model of cVDPV2 outbreaks to aid outbreak response vaccination strategies.

    No full text
    BACKGROUND: Circulating vaccine-derived poliovirus outbreaks are spreading more widely than anticipated, which has generated a crisis for the global polio eradication initiative. Effectively responding with vaccination activities requires a rapid risk assessment. This assessment is made difficult by the low case-to-infection ratio of type 2 poliovirus, variable transmissibility, changing population immunity, surveillance delays, and limited vaccine supply from the global stockpile. The geographical extent of responses have been highly variable between countries. METHODS: We develop a statistical spatio-temporal model of short-term, district-level poliovirus spread that incorporates known risk factors, including historical wild poliovirus transmission risk, routine immunization coverage, population immunity, and exposure to the outbreak virus. RESULTS: We find that proximity to recent cVDPV2 cases is the strongest risk factor for spread of an outbreak, and find significant associations between population immunity, historical risk, routine immunization, and environmental surveillance (p < 0.05). We examine the fit of the model to type 2 vaccine derived poliovirus spread since 2016 and find that our model predicts the location of cVDPV2 cases well (AUC = 0.96). We demonstrate use of the model to estimate appropriate scope of outbreak response activities to current outbreaks. CONCLUSION: As type 2 immunity continues to decline following the cessation of tOPV in 2016, outbreak responses to new cVDPV2 detections will need to be faster and larger in scope. We provide a framework that can be used to support decisions on the appropriate size of a vaccination response when new detections are identified. While the model does not account for all relevant local factors that must be considered in the overall vaccination response, it enables a quantitative basis for outbreak response size

    Criteria developed for nurses to identify patients who should be referred to a clinician for assessment of suspected pneumonia, meningitis, or septicaemia.

    No full text
    a<p>To be referred for further assessment if one or more of the following are present for 14 days or less.</p>b<p>Raised respiratory rate for age is defined as greater than 50 breaths per minute for children at least 2 months but less than 12 months, and as greater than 40 breaths per minute for children at least 12 months but less than 60 months.</p>c<p>Impaired consciousness is defined as V, P, or U on the AVPU score, where A is if the patient is alert, V if responsive to verbal stimulus, P if responsive to pain stimulus, and U if unresponsive.</p>d<p>Prostration is defined as inability to drink or breast feed, or to remain sitting in a child otherwise able to sit.</p
    corecore